数学不会就是不会,他是真会🌚
Candy婚礼管家晓燕
小王子的玫瑰花
关注
囍
$$2^n + 53^n + 49069^n$$
$$\text{im}$$
3
$$x \rightarrow 0$$
求其极限
小王子的玫瑰花
关注
囍
$$2^n + 53^n + 49069^n$$
$$\text{im}$$
3
$$x \rightarrow 0$$
求其极限
囍囍
囍
草稿纸
$$\begin{array}{l}
\operatorname{草稿纸}\\
\lim_{x\rightarrow 0}e^{2\alpha\left(\frac{2^{x}+53^{x}+49069^{x}}{3}\right)^{\frac{1}{3}}}\\
=\lim_{x\rightarrow 0}e^{2\alpha\left(\frac{2^{x}+53^{x}+44069^{x}-3}{3}\right)}\\
=\lim_{x\rightarrow 0} e^{2\alpha\left(\frac{2^{x}+(3^{x}+49069^{x}-5)}{3}\right)}\\
=\lim_{x\rightarrow 0} e^{\frac{2^{x}+7\alpha+5^{x}+7\alpha+4\alpha69^{x}}{3}}\\
=\frac{2\alpha+2\alpha+2\alpha+2\alpha+4\alpha69}{3^{x}+2\alpha+3\alpha+4\alpha69}\\
=\frac{2\alpha+2\alpha+5\alpha+4\alpha69}{3}\\
=\frac{2\alpha+5\alpha+4\alpha69}{3}\\
=\frac{3\alpha+5\alpha+4\alpha69}{3}
\end{array}$$
草稿纸
$$\begin{array}{l}
\operatorname{草稿纸}\\
\lim_{x\rightarrow 0}e^{2\alpha\left(\frac{2^{x}+53^{x}+49069^{x}}{3}\right)^{\frac{1}{3}}}\\
=\lim_{x\rightarrow 0}e^{2\alpha\left(\frac{2^{x}+53^{x}+44069^{x}-3}{3}\right)}\\
=\lim_{x\rightarrow 0} e^{2\alpha\left(\frac{2^{x}+(3^{x}+49069^{x}-5)}{3}\right)}\\
=\lim_{x\rightarrow 0} e^{\frac{2^{x}+7\alpha+5^{x}+7\alpha+4\alpha69^{x}}{3}}\\
=\frac{2\alpha+2\alpha+2\alpha+2\alpha+4\alpha69}{3^{x}+2\alpha+3\alpha+4\alpha69}\\
=\frac{2\alpha+2\alpha+5\alpha+4\alpha69}{3}\\
=\frac{2\alpha+5\alpha+4\alpha69}{3}\\
=\frac{3\alpha+5\alpha+4\alpha69}{3}
\end{array}$$
数学不会就是不会,他是真会🌚